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Questions Interested in Answering

* Answer from the literature: genomic mutations

* But all chronic inflammation related diseases have just as
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Questions Interested in Answering

* A popular assumption is: tumor growth runs out of space

e But cancer like melanoma starts to metastasize as soon as the
tumor grows vertically while some other cancers can grow to
substantial sizes without metastasis

, and different cancers peak at different ages;
some could be as early as 30+




Questions Interested in Answering

* The current literature has no answer.

* | aim to show that some or possibly most of these and many
other cancer related (fundamental) questions may be
answerable through data mining and computational modeling!
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What Defines a Cancer

* The predominant research and treatment efforts have been on
stopping cell division and attacking cells with certain antigens

* Cancer actually has numerous other intrinsic characteristics:
migration, metastasis, drug resistance, reduced blood level of
sodium, cachexia ...

* Very little has been established regarding the functional
relationships among all these
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Main Question to Address Here

* Are all these clinical behaviors of cancer intrinsically linked
through some unknown common drivers?
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From Data to Knowledge

* We have analyzed gene-expression data of over 10,000 cancer tissue
samples and 10,000+ non-cancerous chronic inflammatory disease
samples

* We study possible drivers of cancer initiation, development,
metastasis and other clinical behaviors through data analyses and
computational modeling

* We focus on fundamental balances and possible relationships
between persistent disruption of such balances and disease
development instead of detailed molecular pathways
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Cancer Metabolic Reprogramming

* Substantial changes take place in metabolisms in cancer

* Cancer tends to synthesize de novo nucleotides instead of uptake from
circulation via the salvage pathway

* Cancer tends to inhibit urea cycle for removal of the waste, NH3, of
amino acid metabolism

* Cancer tends to considerably over-produce sialic acids and deploy them
on cancer cell surface
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Cancer Metabolic Reprogramming

 Cancer tends to repress arginine synthesis, uptake and
utilization
* Arginine has by far the highest mutation rate among all amino acids

* Cancer tends to use an inefficient way to produce energy,
namely fermentation instead of the normal, more efficient
respiration process, called the Warburg effect

* And many more ...

* All these are considered as changes selected in support of cell
proliferation
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Intracellular pH in
Cancer and Normal Cells

* Normal cells have acidic cytosolic pH (~6.8) and cancer & all
proliferating cells have alkaline pH (7.2-7.5)

H* % », HCO;z or OH
H . HCO5 or OH
prs
H+
B account for only tiny fraction Lactic acid
among all the acid generating ~ transporters
processes
Normal proliferating cells S |

... suggesting pH related stress



Serine Synthesis in Cancer

* Compared to normal proliferating cells, cancer (tissue) cells
substantially increase synthesis of amino acid serine rather than
uptake it from circulation;

* and more malignant cancers tend to have higher levels of serine
synthesis.

* A key function of serine in cancer is used for nucleotide synthesis

l Serine synthesis
Glycolysis !
|
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Serine Synthesis in Cancer

* The overall synthesis reaction can be written as

glutamate + 3PG + NAD" + H,O -> 2-oxoglutarate + P; + serine + NADH + H*

* which produces one net proton. In comparison, serine uptake by

SLC1A4/As, the main transporters of serine, is pH neutral.

NOTE: When analyzing cancer data, NAD+ and NADH have to be analyzed
separately rather than as one closed system as in normal cells. acidificati



Tryptophan Degradation in Cancer

* Normal cells degrade tryptophan to acetyl-CoA via the following
pathway but cancer only uses part of the pathway to produce

kynurenine and 3-hydroxyanthrranliate
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Increased Triglyceride Synthesis

* Cancer increases the activity of triglyceride synthesis
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Increased Triglyceride Degradation

* Cancer also increases the activity of triglyceride degradation
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Warburg Effect

* This ATP is different from that ATP: each ATP produced by Warburg
effect produces one H+ when the ATP is hydrolyzed while ATP
produced by respiration is pH neutral!

glucose

produces 2 ATPs per

glucose mitochondria

produces 36 energy units
(ATPs) per glucose

electron transport chain




* ATP generation by respiration
* ADP3 + HPO,> — ATP# + OH-

* ATP generation by glycolysis
* glucose + 2ADP3" + 2HPO, > — 2 lactate + 2 ATP#

* Hydrolysis of ATP
* ATP+ + H,0 — ADP¥ + HPO, > + H*

Warburg effect produces more protons than respiration



Increased Sialic Acid Production

* All cancers tend to gradually increase their sialic acid synthesis
as the disease advances
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Nucleotide Metabolic Reprogramming

* Cancer tends to de novo synthesize nucleotides rather than
uptake via salvage

* Cancer generally synthesizes considerably more purine and
pyrimidine
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Nucleotide Metabolic Reprogramming
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Pyrimidine de novo synthesis:

5 ATP + 2 H,0 + 2 glutamine + aspartate + 5-phospho-D-ribose-diphosphate -> dCDP + H,CQ @
5 ATP + H,0 + glutamine + aspartate + 5-phospho-D-ribose-diphosphate -> dTDP + H,CO; &

Pyrimidine salvage pathway:

2 ATP + H,0 + 2-deoxycytidine -> dTDP;
2 ATP + 2-deoxycytidine -> dCDP + H*;
2 ATP + thymidine -> dTDP + H*.

Purine de novo synthesis:
5 ATP + GTP + H,CO; + glycine + 2 aspartate + 5-phospho-D-ribose-diphosphate -> dADP

I!E !+ + H,CO; + H,0 + glycine + aspartate + glutamine + 5-phospho-D-ribose-diate -> dGDP +

Purine salvage pathway I:
ATP + 2-deoxyadenosine -> dAMP + H*;
ATP + 2-deoxyguanosine -> dGMP + H*;

Purine salvage pathway II:

2 ATP + adenosine -> dADP + H,0 + H*;

ATP + GTP + adenosine -> dADP + H,0 + H*;

2 ATP + NAD* + 2 H,0 + guanosine -> dGDP + NADH + 2 H*;
ATP + guanosine -> dGDP + H,0.




RNA Pyrimidine and Purine
Degradation

* Pyrimidine degradation is known to be persistently repressed or
inhibited while purine degradation is considerably up-regulated
across numerous cancer types

* The process for pyrimidine degradation is pH neutral and that for
purine produces 2 or 3 protons

* Up-/down-regulation is consistent with production/consumption
of protons.



Extensive Metabolic
Reprogramming in Cancer

* We have analyzed ~50 reprogrammed metabolisms across 14
cancer types, 7,000+ samples in TCGA

* Found that every reprogrammed metabolism examined
produces more protons than the original metabolisms.



Summary 1

* Cancer tissue cells generally repress proton-extruding transporters
and up-regulate proton-absorbing transporters

* A large number of metabolisms are reprogrammed to increase
their proton production and decrease proton consumption

* And yet, cancer intracellular pH goes up!

* Why?



Searching for OH" Producing Processes

* Along search led us to focus on iron metabolism as it has been
long been known that ALL cancers have

* The reason is that all cancer sites have elevated H202 levels,
largely due to increased population and activities of macrophages;
and red blood cells, which carry iron and O2, tend to oxidized and
die here, leading to the accumulation of iron

* The combination of iron overload and increased H202
concentration leads to Fenton reaction



Persistent Fenton Reactions

* If there are reducing molecules around the reaction, which can
reduce Fe3* to Fe2*, the reaction will continue

* Our analyses predict that cancer cells use O2- as the main
reducing molecule, which is largely from neutrophils

* with Fe2* as catalyst with plentiful superoxide available

* We predict: all cancer cells have Fenton reactions in their cytosol,
and mitochondria; and they overwhelm the pH buffer quickly,
hence creating alkaline stress!

Sun et al, JMCB, 2018. 27



Metabolic Reprogramming vs.
Fenton Reaction

* Aregression analysis shows that Fenton reaction level can be
well explained statistically by the combination of all the
reprogrammed metabolisms in each of 14 cancer types
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Based on this and additional supporting evidence,
we predict that all the reprogrammed metabolisms
are induced to neutralize OH- by Fenton reactigns




Reprogrammed Metabolisms

* Unlike normal metabolisms, reprogrammed metabolisms are
triggered to increase proton production but how do the host
cells deal with the other products like X andY?

* Some are released from the cells such as various hydroxyl-
compounds like hydroxyl-proline.

* By for many, finding exits for all such X andY becomes a new
stress for all so affected cells



Reprogrammed Metabolisms

* Many others cannot be handled this way for two main reasons:

* some of them are acidic, and hence releasing them will make
the cells more alkaline, which cancer generally avoids;

* some are electrically charged, hence they have to be co-
exported with some oppositely charged molecules to
maintain electric neutrality; therefore not sustainable.

* For some, the affected cells degrade them, followed by the above
producing step, forming a production-degradation cycle, including
production and degradation of triglycerides, fatty acids, phospholipids
as each such cycle produces net protons!



Nucleotide De Novo Syntheses

* Nucleotide de novo synthesis represents probably the most
effective acidifier as synthesis of each purine produces 8-g
protons and each pyrimidine 3-5 protons

* But they cannot be easily exported since they are all negatively
charged!

* If they are not released, nucleotide accumulation will slow down
and ultimately stop this most powerful acidifier.



Cell Division Model

The levels of Fenton reactions

: ; : cell division rates
Many, possibly all unicellular organisms use

nucleotide-sugar concentration to drive cell cycle

Cell division to rid

of nucleotides?
Nucleotide synthesis is a

major workhorse acidifier
To sustain, it requires ‘ ‘
nucleotides be rapidly

H* removed

H+

« B

(J- H* y+ A range.of reprogrammed
metabolisms

He
A Warburg effect

H*H+ |, ; .
N H Nucleotide synthesis
H* Qe+ Sialic acids
Fenton reaction H* h+ =

. =
Chronic inflammation i

Iron accumulation



Sialic Acid Synthesis

* The synthesis of a sialic acid produces two protons and its
deployment also produces additional protons (via synthesis of
gangliosides)

* Sialic acids are generally deployed on cell surface and they are
negatively charged
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Metastasis model

* It is interesting to note that a sialic acid is negatively charged!

 Consequence: The repulsion among the negatively charged cell
surfaces alters the shape of the cells, hence activating mechano-
sensors such as SNAIL, and drives cells apart, enhancing the cell-
cell adhesion, ultimately activating the EMT mechanism for cancer
cell migration

34



Other Phenotypes of Cancer

* Drug resistance
* Persistent loss of sodium in blood

e Cachexia
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Summary 2

* Metabolic reprogramming is induced to neutralize OH-
persistently produced due to chronic inflammation and iron
overload

* Finding metabolic exits for some of the reprogrammed
metabolisms give rise to a variety of phenotypic behaviors of
cancer cells.



Purposes Served by Mutations

* To ensure that cells can divide at rates comparable with the
rates of Fenton reactions

* To prevent execution of various constraints that inhibit cell
division illegally

* In general, to enable metabolic reprogramming, hence to enable
cell survival



Take-Home Message

* Chronic inflammation of certain types may play a key driving role
of Fenton reactions in multiple subcellular locations

* Persistent Fenton reactions in cytosol and mitochondria may
play the key driving roles in cell level metabolic reprogramming

* Clinical behaviors of cancer, including cell division metastasis,
drug resistance, ..., cachexia, may be the results of these
reprogrammed metabolisms, either to provide metabolic exits in
a sustained manner or to maintain fundamental properties of
cells such as electric neutrality
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